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Abstract

This research determined the potential for wavelet-based analysis of hyperspectral reflectance signals for detecting the presence of early

season pitted morningglory when intermixed with soybean and soil. Ground-level hyperspectral reflectance signals were collected in a field

experiment containing plots of soybean and plots containing soybean intermixed with pitted morningglory in a conventional tillage system.

The collected hyperspectral signals contained mixed reflectances for vegetation and background soil in each plot. Pure reflectance signals

were also collected for pitted morningglory, soybean, and bare soil so that synthetically mixed reflectance curves could be generated,

evaluated, and the mixing proportions controlled. Wavelet detail coefficients were used as features in linear discriminant analysis for

automated discrimination between the soil + soybean and the soil + soybean + pitted morningglory classes. A total of 36 different mother

wavelets were investigated to determine the effect of mother wavelet selection on the ability to detect the presence of pitted morningglory.

When the growth stage was two to four leaves, which is still controllable with herbicide, the weed could be detected with at least 87%

accuracy, regardless of mother wavelet selection. Moreover, the Daubechies 3, Daubechies 5, and Coiflet 5 mother wavelets resulted in 100%

classification accuracy. Most of the best wavelet coefficients, in terms of discriminating ability, were derived from the red-edge and the near-

infrared regions of the spectrum. For comparison purposes, the raw spectral bands and principal components were evaluated as possible

discriminating features. For the two-leaf to four-leaf weed growth stage, the two methods resulted in classification accuracies of 83% and

81%, respectively. The wavelet-based method was shown to be very promising in detecting the presence of early season pitted morningglory

in mixed hyperspectral reflectances.
D 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction sive scouting has been the only means of providing infor-
Weeds typically are not distributed evenly over entire

fields, but often aggregated into patches due to factors such

as soil pH (Weaver & Hamill, 1985), nutrient levels (Banks,

Santlemann, & Tucker, 1976), cation exchange capacity,

and topography (Medlin et al., 2001). Traditionally, inten-
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mation concerning weed distributions. However, scouting is

labor- and time-intensive, and even after determining where

weed patches occur in fields, the entire field is often treated

with herbicide to control weed patches. Applying herbicides

where weeds do not occur can lead to excessive herbicide

usage, costs associated with herbicide use, time required for

application, soil compaction, and increased risk of herbicide

movement to off-site areas (Cousens & Woolcock, 1987;

Felton, Doss, Nash, & McCoy, 1991; Swanton & Weise,

1991; Thompson, Stafford, & Miller, 1991).

Rising environmental concerns about pesticide use and

increasing production costs associated with their use has

researchers investigating the potential use of remote sensing

for detecting weed distributions in agricultural fields. Weed

distribution maps, developed from remotely sensed imagery,
ed.
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could be used along with differential geographical position-

ing systems (DGPS) and site-specific herbicide applicators

for targeting herbicide inputs only to areas containing weed

densities above economic thresholds (Christensen, Walter,

& Heisel, 1999; Thornton, Fawcett, Dent, & Perkins, 1990).

The interest in multispectral remote sensing for character-

izing agricultural objectives such as weed detection has

been researched and used with some success to detect weeds

in rangelands (Everitt, Escobar, Alaniz, Davis, & Richard-

son, 1996; Lass, Carson, & Callihan, 1996) and agricultural

crops such as soybean and cotton (Gossypium hirsutum L.)

(Medlin, Shaw, Gerard, & Lamastus, 2000; Richardson,

Menges, & Nixon, 1985). However, for agricultural crop

scenarios, soil background reflectance often interferes with

early-season weed detection, which is when most weed

control options are implemented (Barrentine, 1974). One

reason for the interference from soil background reflectance

is that most multispectral reflectance data contains three to

seven broad-band measurements, which are often restricted

to the visible and near-infrared portions of the electro-

magnetic spectrum. These portions of the spectrum are

typically influenced by soil background at low vegetation

cover (Elvidge & Mouat, 1985). Due to this interference, the

potential use for other remote sensing sources such as

hyperspectral data in detecting weeds has increased in recent

years.

Most of the new hyperspectral sensors contain upwards

of 200 spectral channels (Thenkabail, Smith, & Pauw,

2000). Some hand-held hyperspectral sensors have been

developed that contain more than 1500 spectral channels.

This increase in the amount of data, when compared to

multispectral (three to seven bands), and the fact that

hyperspectral data is often collected from several regions

of the electromagnetic spectrum (ultraviolet, visible, near-,

mid-, and far-infrared) has led to a variety of potential uses

for hyperspectral data, such as estimating crop yield (Shi-

bayama & Akiyama, 1991), chlorophyll content (Blackburn,

1998), and photosynthetic and crop leaf area index and

biomass (Thenkabail et al., 2000). If hyperspectral data can

be used to characterize physical and physiological crop

factors, there may also be potential for narrow-band hyper-

spectral measurements collected across a wide array of the

spectrum for weed detection in agricultural fields.

While hyperspectral data provide the opportunity for

more detailed analysis of on-ground materials, the high-

dimensional data generated by the hyperspectral sensors

create a new challenge for conventional spectral data

analysis techniques (Jiminez & Landgrebe, 1999). It has

been proven that the high-dimensional data space is mostly

empty, due to the fact that the volume of a hyperspectral

dataset concentrates in the corners and the volume of a

hypersphere concentrates in an outer shell (Jiminez &

Landgrebe, 1998). Principally, two solutions exist: (i) pro-

vide larger sets of training data or (ii) reduce the dimension-

ality by extracting pertinent features from the hyperspectral

signals. Oftentimes, solution (i) is not practical since one
must take into account that as the number of dimensions

increase, the sample size of the training data needs to

increase exponentially in order to have reliable multivariate

statistics for estimating specific parameters. Thus, we must

consider solution (ii), creating a need for feature extraction

methods that can reduce the data space dimensions without

losing the original information that allows for the separation

of classes.

One approach to feature extraction is to consider the

hyperspectral signal amplitude in a given spectral channel as

the feature. This leads to sorting through the various spectral

channels to determine which channels are the best features

for discriminating between classes. Another approach is to

utilize more advanced digital signal processing (DSP)

methodologies to extract pertinent features from the hyper-

spectral signal. For example, the discrete wavelet transform

(DWT) is often used in DSP for analyzing the scale-position

information of a signal. The DWT of a given signal results

in a set of wavelet coefficients associated with a range of

scales and positions. Each coefficient is directly related to

the amount of energy in the signal at a particular position

and scale. By extracting features from the wavelet coeffi-

cients, we can quantify the small-scale (or fine detail)

behavior as well as the large-scale (or gross) behavior of

the hyperspectral signal.

Wavelets have been previously utilized in various areas

of remote sensing. Wavelets have been used to reveal

relationships between landscape features and plant diversity

indices at different imagery spatial resolutions (Brosofske,

Chen, Crow, & Saunder, 1999), identify forest canopy

structure (Bradshaw & Spies, 1992), and to evaluate the

influence of cover crop residue on hyperspectral reflectance

of soybean and weeds (Huang, Bruce, Koger, & Shaw,

2001). However, the potential for wavelet analysis of hyper-

spectral reflectance data for discriminating weeds from crop

is not well documented. Also, little is known of the

influence tillage practices, such as conventional till and

no-till systems, have on these discriminant capabilities.

With this in mind, the objectives of this research are (i) to

evaluate the utility of the DWT for extracting pertinent

features from hyperspectral signals and (ii) to investigate the

effect of the choice of mother wavelet on the features

efficacy. Both objectives are conditional on hyperspectral

data being used to detect pitted morningglory in soybean.
2. Materials and methods

2.1. Study area

A field experiment was established in 2001 at the

Plant Science Research Center, Starkville, MS (33j28VN,
88j47VW). The soil type is a Marietta fine sandy loam

(fine-loamy, mixed, thermic, siliceous Aquic Fluventic

Eutrochrept) with a pH of 6.0 and 1.4% organic matter.

The experiment was arranged in a randomized complete
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block with each treatment replicated four times in 4.5� 12

m plots. The treatments were presence or absence of pitted

morningglory, a troublesome vining-type row crop weed

species (Sanders et al., 2001), with half of the plots

containing pitted morningglory intermixed with soybean

and the other half containing weed-free soybean. Existing

vegetation in all plots was desiccated with paraquat at 1.1

kg/ha on April 19, 2001. Two days later, the entire exper-

imental area was disked twice, and the glyphosate resistant

soybean cultivar ‘Asgrow 4702 RR’ was planted in 57-cm

rows in all plots on May 21. Immediately after planting,

volunteer weeds in all plots were desiccated with paraquat

(1.1 kg/ha). Then a 3.0� 3.0-m plastic tarp was placed in

the center of designated plots that were to contain pitted

morningglory. A preemergence application of metolachlor

at 2.3 kg/ha plus imazaquin at 0.14 kg/ha was applied to

control all weeds in the areas not covered by tarps, includ-

ing the ‘‘weed free’’ plots. Paraquat (1.1 kg/ha) was also

applied to kill emerged weeds and cover crop re-growth.

Tarps were then removed so that pitted morningglory seed

could be planted in nine 1.0-m2 quadrates in the center of

each pitted morningglory plot. Once emerged, pitted

morningglory populations were thinned so that each 1.0-

m2 quadrate contained four plants. This density was main-

tained throughout the course of the experiments by hand

pulling excess pitted morningglory plants and other weeds

as needed. All weeds in plots not containing pitted morning-

glory (‘‘weed-free’’) and weeds outside of the center

3.0� 3.0-m sampling area in the plots containing pitted

morningglory were controlled with glyphosate at 1.1 kg/ha.

2.2. Data acquisition

Beginning when pitted morningglory was in the cotyle-

don to two-leaf and soybean in the two-leaf to three-leaf

growth stages (Fehr, Caviness, Burmood, & Pennington,

1971), hyperspectral reflectance measurements were col-

lected using an ASD FieldSpec Pro FR portable spectror-

adiometer manufactured by Analytical Spectral Devicesk.

Reflectance is the ratio of energy reflected off the target (i.e.

plant and background soil/residue) to energy incident on the

target, which was measured using a BaSO4 white reference.

The hyperspectral reflectance measurements were collected
Table 1

Pitted morningglory and soybean growth stage, height, and ground cover estimat

Soybean plus pitted morningglory plots

Pitted morningglory Soybean

Growth stage

(# leaves)

Height

(cm)

Ground

cover (%)

Growth stageb

(# leaves)

Heig

(cm)

Coty.-2 5–8 25 V2–V3 5–1

2–4 5–10 30 V3–V4 9–1

4–6 8–12 38 V4–V6 22–2

6–9 8–14 45 V5–V7 23–3

a Coty., cotyledon.
b Soybean were in (V) vegetative stage of development.
between the spectral range of 350 and 2500 nm, with 3.0-

nm spectral resolution at 700- and 30-nm resolution at 1400

and 2100 nm, respectively. This resulted in 2151 individual

spectral bands for each hyperspectral reflectance curve, with

a bandwidth of 1.4 nm between 350 and 1050 nm and 1.0

nm between 1000 to 2500 nm. Eight hyperspectral reflec-

tance measurements were collected for soybean plus back-

ground soil in each weed-free plot. Eight measurements for

pitted morningglory intermixed with soybean plus back-

ground soil were also collected from each plot containing

pitted morningglory. Hyperspectral measurements were

collected using a 23j field-of-view (FOV) optic. The sensor

was held 122 cm directly above the object of interest

(soybean or pitted morningglory intermixed with soybean).

This resulted in approximately 0.25-m spatial resolution for

each hyperspectral measurement. This was done to ensure

that background reflectance of soil was included in each

soybean or soybean intermixed with pitted morningglory

measurement. Hyperspectral reflectance data were collected

once per week until pitted morningglory plants were

beyond the six-leaf to nine-leaf growth stage. Plant height,

growth stage (Fehr et al., 1971), and ground cover estimates

for soybean and pitted morningglory at time of hyper-

spectral data acquisition are listed in Table 1. These meas-

urements resulted in a database of 32 hyperspectral

signatures for each class (soybean + soil and soybean + pit-

ted morningglory + soil) for each growth stage. As an

example, Fig. 1 shows the hyperspectral signals measured

during the two-leaf to four-leaf growth stage.

In situ hyperspectral reflectance measurements were also

collected for canopies of soybean and pitted morningglory

plants at the two-leaf to four-leaf pitted morningglory

growth stage in the conventional tillage plots using an 8j
FOV optic held 6 cm directly above each object of interest

(soybean or pitted morningglory leaf or bare soil). Four

reflectance measurements were collected from the upper-

most leaflet of the youngest, fully expanded, trifoliolate

soybean leaf from each plot. Four measurements were also

taken from the youngest, fully expanded pitted morning-

glory leaf in each soybean plus pitted morningglory plot.

Four bare soil reflectance measurements (two from weed-

free soybean and two from soybean plus pitted morning-

glory plots) were also collected. In total, 16 reflectance
esa

Weed-free soybean plots

Soybean

ht Ground

cover (%)

Growth stageb

(# leaves)

Height

(cm)

Ground

cover (%)

5 28 V2–V3 7–14 32

6 30 V3–V4 12–16 34

9 36 V4–V6 23–27 39

5 44 V5–V7 25–35 46



Fig. 1. Soybean + soil and soybean + pitted morningglory + soil mixed-pixel reflectance signals containing unequal proportions of vegetation and soil

reflectance (naturally mixed).

Table 2

Proportions (%) of soybean, pitted morningglory, and soil reflectance for

synthetic mixed-pixel hyperspectral signals containing unequal and equal

amounts of vegetation reflectance

Mixed-pixel

reflectance

component

Reflectance curves

containing unequal

proportions of

vegetation and soil

Reflectance curves

containing equal

proportions of

vegetation and soil

Soybean +

soil

Soybean +

pitted

morning-

glory + soil

Soybean +

soil

Soybean +

pitted

morning-

glory + soil

Soybean 34 30 34 17

Pitted morning-

glory

0 30 0 17

Soil 66 40 66 66
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measurements for soybean leaves, 16 for pitted morning-

glory leaves, and 16 for bare soil were collected for each

plot. Because of these measurements, the authors were able

to create a database of synthetically mixed reflectance

signals, where there were 120 hyperspectral signatures in

each class (soybean + soil and soybean + pitted morning-

glory + soil).

2.3. Development of mixed reflectance signals

When the hyperspectral data were collected for the mixed

signatures, using the 23j FOV optic, the data could be

divided into two main classes: (a) soybean + pitted morning-

glory + soil and (b) soybean + soil. Note that these are

commonly referred to as mixed pixels, since they corre-

spond to pixels from a hyperspectral image cube where

more than one endmember was present in the field-of-view.

Regardless of growth stage, the mixed pixels for these two

classes consisted of differing percentages of vegetative

groundcover. For example, for the two-leaf to four-leaf

pitted morningglory growth stage in Table 1, the percent

vegetative groundcover is listed as (a) 30% soybean and

30% pitted morningglory for the soybean + pitted morning-

glory + soil class and (b) 34% soybean for the soybean + soil

class. Thus, the percentage of total vegetative groundcover

varied between 60% and 34% for the two classes. An

automated classification system was designed and tested

for the purpose of discriminating between the two classes:

(a) soybean + pitted morningglory + soil and (b) soybean +

soil. However, there was concern whether the system was
detecting the actual presence of pitted morningglory or

simply detecting a higher percentage of vegetative ground-

cover. Therefore, the unmixed hyperspectral signals (data

collected with the 8j FOV optic) were used to investigate

this issue.

The 8j FOV data represented pure pixels of each of the

groundcover components: (a) soybean only, (b) pitted mor-

ningglory only, and (c) soil only. The pure pixel hyper-

spectral signals were used to synthesize mixed-pixel data.

Several linearly mixed datasets were constructed, and the

mixing abundances are listed in Table 2. In each mixing

case, the pure hyperspectral signals used for the two classes

were mutually exclusive, so that each pure signal was used



Fig. 2. Soybean + soil and soybean + pitted morningglory + soil mixed-pixel reflectance signals containing equal proportions of vegetation and soil reflectance

(synthetically mixed).

 

Fig. 3. Dyadic filter tree implementation of the discrete wavelet transform.
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only once in developing synthetic mixed-pixel reflectance

curves. Fig. 2 shows an example case of the synthetically

mixed hyperspectral signals. Note that for each case listed in

Table 2, the total percentage of vegetation was held con-

stant. For example, consider the second dataset where the

two classes of mixed signals had mixing proportions of 70/

30% and 70/10/20%. In each class, the proportion of

vegetation was 30%. Hence, if the automated classification

system detected any difference between the two classes, the

differences resulted from the variation in vegetation type,

not variation in percentage of vegetation groundcover.

2.4. Hyperspectral signal analysis

Several automated classification systems were imple-

mented and tested for the purpose of automatically discrim-

inating between the hyperspectral curves in the soybean +

soil class and the soybean + pitted morningglory + soil

class. The difference in the various classification systems

was the method of feature extraction. Three main feature

extraction methods were used to reduce the dimensionality

of the hyperspectral signals: (i) selecting a reduced set of

spectral bands (without using any transformation), (ii)

selecting a reduced set of coefficients after applying princi-

pal component analysis (PCA), and (iii) selecting a reduced

set of coefficients after applying a discrete wavelet trans-

form (DWT) to the signal.

For the PCA approach, case (ii), the principal component

transform was applied to each hyperspectral signal, and the

transform was based on the total covariance matrix. That is,

it is the unsupervised PCA method. Oftentimes, simply

selecting the first few components is not an effective method
of dimensionality reduction when the goal is target detec-

tion. Therefore, the components were sorted, and an opti-

mum subset of components was selected. Selection was

based on receiver operating characteristics (ROC) curves as

is described in more detail in the following paragraphs. For

case (i), the spectral bands of the hyperspectral signals are

used directly with no transformations. Again, ROC curves

were used to sort through the spectral bands and select an

optimum subset. For case (iii), the DWTwas applied to each

hyperspectral signal, and the resulting coefficients were

sorted using ROC curves to obtain an optimum subset.

The DWT was implemented using a dyadic filter tree, as

shown in Fig. 3. The input to the filterbank, f(k), is the

hyperspectral signal, and the signal is passed through a

series of low-pass filters (LPF) and high-pass filters (HPF).

After each filter, the signal is downsampled by a factor of

two (#2). The result of the filter bank, Wt, is a set of wavelet

coefficients. The filters are dependent on the selection of the



Fig. 4. Block diagram of training phase of automated classification system.
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mother wavelet function, w(k), used in the transform. As a

result, the wavelet coefficients vary according to the selec-

tion of the mother wavelet. The authors investigated a

variety of mother wavelets in order to determine their effect

on the wavelet coefficients’ class discriminating ability.

In order to be used in the DWT filter bank, a mother

wavelet function must satisfy a mathematical criteria known

as the mutiresolution analysis (MRA) property (Mallat,

1989). Thirty-six different mother wavelets were investi-

gated for identifying pertinent features capable of being

used for discriminating the two classes. These wavelet

functions can be organized into five classes: Haar, Daube-

chies, Symlet, Coiflet, and Biorthogonal (Grabs, 1995).

Each class is different with respect to symmetry, regularity,

support, and orthogonality. The Haar wavelet is arguably the

simplest type of mother wavelet. It is asymmetric, has

compact support, and has 1/k decay in frequency. It is

important to note that the detail coefficients resulting from

the use of the Haar mother wavelet are equivalent to a first-

order approximation of the first derivative of the hyper-

spectral signal. This is interesting considering the common

use of derivative analysis in spectroscopy, such as the

Savitzky–Golay method (Bruce & Li, 2001). However,

the Haar DWT has the advantage that scale is a factor in

the transform. That is, the coefficients that result from the

Haar DWT correspond to systematically applying various

width first-order derivatives to the hyperspectral signal in

such a way that there exists no redundancy in the output.

Furthermore, other mother wavelets were also investigated

to determine if the choice of mother wavelet greatly affects

the results. For the Daubechies-n wavelet, n specifies the

order of the mother wavelet, corresponds to the regularity of

the mother wavelet, and is related to the number of

coefficients necessary to represent the associated low-pass

and high-pass filters in the dyadic filter tree implementation.

The Daubechies wavelet has compact support, and the

support length is 2n� 1. Symlet wavelets are a variation

on the Daubechies wavelets in order to obtain a more

symmetric mother wavelet function. For the Coiflet-n wave-

let, n specifies the order of the mother wavelet. The Coiflet

wavelet has 2n moments equal to zero. This is the highest

number of vanishing moments for an n-order wavelet. The

Coiflet wavelet also has compact support, and the support

length is 6n� 1. The Haar, Daubechies, Symlet, and Coiflet

wavelets all result in an orthogonal decomposition of the

hyperspectral signal. Finally, the biorthogonal wavelets have

compact support but do not provide an orthogonal decom-

position of the hyperspectral signal. The low-pass and high-

pass filters associated with the biorthogonal wavelets are

symmetric. Differences in support, regularity, and symmetry

of the mother wavelets affect the resulting wavelet coeffi-

cients and, hence, the resulting features used for discrim-

inating between ground cover classes. One goal of this

experiment is to investigate whether the selection of mother

wavelet greatly affects the discriminating capability and to

investigate which of these mother wavelets perform best.
The automated classification systems were designed and

trained using receiver operating characteristics (ROC)

curves and Fisher’s linear discriminant analysis (LDA).

For each system, H
t represents the set of potential hyper-

spectral features for a given system (Fig. 4). For case (i),

H
t ¼ f ðkÞ ; that is, the set of potential features were the

amplitudes of the hyperspectral curve in each of the 2151

spectral bands. For case (ii), H
t is the set of coefficients

resulting from applying the principal component transform

to the hyperspectral signal. For case (iii), H
t ¼ W

t; that is,

the set of potential features were the wavelet coefficients

resulting from the DWT.

For each case, the potential features were ranked accord-

ing to their area, AZ, under the ROC curve (Hanley &

McNeil, 1982). For a given feature, AZ ranges between 0.5

and 1.0. A value of 0.5 indicates the feature has no ability to

separate the classes (soybean + soil and soybean + pitted

morningglory + soil), and a value of 1.0 indicates the

feature has perfect ability to separate the classes. For case

(i), AZ was computed for each of the 2151 spectral bands.

This resulted in a vector, AZ
t , containing 2151 areas. For

cases (ii) and (iii), AZ was computed for each of the PCA

coefficients and DWT coefficients, respectively. In each

case, the potential features were then sorted, such that the

optimum combination of 10 spectral bands was selected to

form a reduced feature set, F
t. An index vector, I

t, was also

created to keep track of which features were selected for the

reduced feature set. The index vector was used when the

system was later evaluated on test data.

The reduced feature set was used as an input to an

automated statistical classifier. The first stage of the classi-

fier was Fisher’s linear discriminant analysis (LDA). LDA

produces a new feature vector, G
t , via an optimal linear

combination of the elements in F
t. That is, G

t ¼ WF
t, where

W is a linear combination weight matrix. For an M-class



Fig. 5. Block diagram of automated classification system.
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problem, W is a ((M� 1)� J ) weight matrix, F
t is a ( J� 1)

vector, and G
t is a ((M� 1)� 1) vector. The optimal

weights, W, are calculated using the training data (Webb,

1999). Note that for this experiment, the number of classes

was M = 2, since the classes were soybean + soil and soy-

bean + pitted morningglory + soil. Thus, the final feature

vector, G
t, had a scalar matrix dimensionality of 1�1. That

is, the 2151 dimensionality of the hyperspectral signal was

reduced down to a one-dimensional value. The weight

matrix, W, was used later when the system was evaluated

on test data.

Fig. 5 shows the stages of the final automated classifi-

cation system. The system was tested with Fisher’s linear

discriminant analysis using the unbiased leave-one-out, or

cross-validation, method (Johnson & Wichern, 1992). The

classification accuracy, Acc, was computed to evaluate the

system performance. A 95% confidence interval, I95, was

also calculated to monitor the reliability of classification

results and account for the limited size of the training and

testing data (Fisher & Belle, 1993). Synthetic mixed-pixel

development, PCA, DWT, ROC, and automated classifica-

tion system analysis procedures were all conducted with

Matlab4 software developed by the authors.
3. Results and discussion

3.1. Varying feature extraction method

For each pitted morningglory growth stage, the accu-

racies of the automated classification systems for the cases

when the optimum subsets of (i) spectral bands, (ii) princi-

pal components, and (iii) Haar wavelet detail coefficients
4 Matlab, The Mathworks, 3 Apple Drive, Natick, MA 01760-2098,

USA.
are used as features are listed in Table 3. The classification

results are reported in terms of specificity (class not con-

taining pitted morningglory reflectance), sensitivity (class

containing pitted morningglory reflectance), and overall

classification accuracy, where accuracy is defined as percent

correctly classified.

The PCA approach resulted in the lowest classification

accuracies at three of the four pitted morningglory growth

stages (Table 3). The system’s overall classification accu-

racy ranged from 72% to 83%. While PCA is commonly

used in hyperspectral data analysis, it is not a particularly

useful feature extraction method when the difference in

reflectance for different vegetation types does not differ

substantially, especially when the within-class variances

dominate the between-class variances. Typically, the un-

transformed spectral bands outperfromed the PCA compo-

nents. When using the spectral bands as features, the

system’s overall classification accuracy ranged from 80%

to 87%. However, the DWT approach performed the best at

every growth stage, with the system’s overall classification

accuracy ranging from 90% to 100%. Recall that the Haar

mother wavelet is arguably the simplest of all mother

wavelets to implement; that is why the Haar mother wavelet

was used in the first stage of analysis. Based on these

results, the wavelet-based approach shows great promise for

discriminating weed-free soybean and soybean intermixed

with pitted morningglory, even at early growth stages when

pitted morningglory is most easily controlled with herbi-

cide.

The classification system’s specificity is generally higher

than the sensitivity. Typically, this is not a desired result,

since the specificity indicates the system’s ability to detect

the absence of the target (pitted morningglory) and the

sensitivity indicates the system’s ability to detect the target.

A low sensitivity indicates that the system will have a high

number of target misses. In this application, the end user

would more likely prefer a false alarm rather than a target

miss, since false alarms would cause the end user to use

excessive amounts of herbicide. However, target misses

would cause areas that contain weeds to not be treated.

This is a trend worth noting, even though the system re-

sults in specificities and sensitivities that are both quite

high.

When spectral band features were used, each spectral

band was evaluated using the area under the ROC curve,

and an optimum subset of 10 spectral bands was selected as

a feature vector (Table 4). Fig. 6 shows a plot of the ROC

areas (AZ’s) for the four-leaf to six-leaf pitted morningglory

growth stage. The figure also shows a randomly selected

soil + soybean hyperspectral signal, for comparison purpo-

ses. Notice that the ROC areas are largest in the NIR region.

However, simply selecting a subset of these bands would be

suboptimum because of the redundancy in these closely

neighboring bands. When the optimum subset of 10 bands

was actually derived, the spectral bands came from across

the spectrum (Table 4).



Table 3

Classification accuracy (%) of automated systems for the three feature extraction methods at each growth stage

Growth stagea Feature extraction Classification accuracy Overall classification

Pitted morning

glory

Soybean
method

Specificity, soybean + soil Sensitivity, soybean +

pitted MGb + soil

accuracy

Coty.b-2 V2–V3 Principal components 72 73 73

spectral bands 85 75 80

Haar wavelet details 95 85 90

2–4 V3–V4 Principal components 85 80 83

spectral bands 88 75 81

Haar wavelet details 93 97 95

4–6 V4–V6 Principal components 73 83 78

spectral bands 87 87 87

Haar wavelet details 100 100 100

6–9 V5–V7 Principal components 75 69 72

spectral bands 88 84 86

Haar wavelet details 92 90 91

a Soybean were in (V) vegetative stage of development.
b Coty., cotyledon; MG, morningglory.
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Likewise, when the wavelet features were used, each

detail coefficient was evaluated using the area under the

ROC curve, and an optimum subset of 10 coefficients was

selected as a feature vector. Simply plotting the area under

the ROC curve for the wavelet detail coefficients was not as

informative since the wavelet coefficients correspond not

only to spectral band position but also to scale. In order to

obtain a visual representation of ‘‘where’’ in the spectral

curve the best wavelet coefficients reside, the 10 coefficients

were used to reconstruct the reflectance curve. That is, an

inverse DWT was computed using only the 10 best detail

coefficients, the ones selected to be in the best subset and

make up the feature vector F
t (as shown in Fig. 4). Fig. 7

shows the reconstruction of a randomly selected soil + soy-

bean hyperspectral signal, as well as the original signal for

comparison purposes. Notice that the best wavelet coeffi-

cients primarily correspond to small details near the red-edge

and larger scale details in the infrared region of the spectrum.

Since the Haar mother wavelet was used in this portion of the

experiment, the reconstruction has a distinct square wave

behavior. Recall that wavelet coefficients are a function of

scale and position (fine detail versus global behavior at

various locations in the hyperspectral signal). Since a Haar

wavelet detail coefficient corresponds to a first-order approx-

imation of the first derivative of the analyzed signal, the best
Table 4

Spectral bands chosen with ROC curve analysis at each pitted morning

glory growth stagea

Pitted morning

glory growth

stage (# leaves)

Spectral bandb (nm)

Coty.-2 521, 601, 673, 798, 906, 914, 1161, 1523, 1541, 2107

2–4 572, 606, 782, 791, 816, 907, 1173, 1498, 1512, 2087

4–6 583, 627, 629, 801, 843, 867, 952, 1587, 2197, 2201

6–9 621, 689, 787, 801, 822, 914, 977, 1522, 1531, 2083

a Coty., cotyledon.
b Each spectral band 1.4 nm in width.
detail coefficients directly correspond to the fine detail and

large-scale slopes of the reflectance curve at various loca-

tions. Several of the best detail coefficients are located at

c 700 to 750 nm. These are very small-scale coefficients

and are related to the slope of the red-edge region. Another

one of the best detail coefficients is located at c 1050 nm. It

is a larger scale coefficient and is related to the slope of the

reflectance curve in the infrared region. The fact that some of

the best detail coefficients stem from larger scales in the

DWT indicates that a more global view of the signal can be

more useful than simply observing the reflectance at finely

resolved spectral bands. This might be obvious when the

reflectance signals of the tested classes are dramatically

different, such as soil versus vegetation. However, this is

not intuitive when the reflectance signals of the classes

(soybean + soil and soybean + pitted morningglory + soil)

are subtly different, as with these data.

3.2. Varying mother wavelet

Table 5 shows the classification results when varying the

mother wavelet. These results demonstrate that the choice of

mother wavelet can greatly affect the efficacy of the wave-

let-based features. If we set a threshold of 90% for the

system accuracy and demand the system perform above that

threshold regardless of plant growth stage, then only a few

of the mother wavelets would qualify. These are the Haar,

db5, db10, bior2.2, bior2.4, bior2.6, bior2.8, bior6.8, sym2,

and sym7. Note however, that the very simple Haar mother

wavelet is in this select group of superior performing mother

wavelets.

3.3. Effect of plant growth stage

Next, consider in detail the effect of pitted morningglory

growth stage on the automated system’s classification accu-

racy. The overall classification accuracy for each of the 36



Fig. 6. Randomly selected soybean + soil hyperspectral signal and area under ROC curve at the four-leaf to six-leaf pitted morningglory growth stage.
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mother wavelets at each pitted morningglory growth stage

is shown in Fig. 8. In general, the best classification

accuracies occurred when pitted morningglory was in the

four-leaf to six-leaf growth stage, with 98% to 100%

classification accuracy for many of the tested mother wave-

lets. While classification accuracy was generally higher at

the four-leaf to six-leaf growth stage, in many cases classi-

fication accuracy at the two-leaf to four-leaf stage is almost

as good if not better. In terms of practical implementation, it

is important to classify weeds when the weeds are very

small, as this is the time frame in which they are most easily

controlled with herbicide. Also, one should consider the
Fig. 7. Randomly selected soybean + soil hyperspectral signal and reconst
length of time over which the system provides acceptable

accuracies. Depending on the source of the hyperspectral

imagery, the end user may or may not be able to specify the

exact date of the data collection or know the exact weed

growth stage at the time of data collection. In this case, we

would want to design the classification system to be as

robust as possible. For example, consider the case where the

Daubechies-5 (db5) mother wavelet was used. Classification

accuracy was 95%, 94%, 92%, and 92% at the cotyledon-

two leaf, two–four leaf, four–six leaf, and six–nine leaf

growth stages, respectively. Likewise, when the biorthogo-

nal-6.8 (bior6.8) mother wavelet was used, the accuracies
ruction of the signal using only best 10 wavelet detail coefficients.



Table 5

Classification accuracy of the soybean + soil and soybean + pitted morning-

glory + soil classes when the hyperspectral signals are synthetically mixed

with varying mixing proportions

Mixing proportions

(%) soybean +

soil class

Mixing proportions (%) soybean +

pitted morningglory +

soil class

Overall

classification

accuracy (%)a

Soil Soybeanb Soil Soybeanb Pitted

morning-

gloryc

90 10 90 5 5 73

80 40 80 5 15 88

80 40 80 10 10 83

80 40 80 15 5 80

70 30 70 10 20 97

70 30 70 15 15 94

70 30 70 20 10 91

60 40 60 10 30 100

60 40 60 20 20 100

60 40 60 30 10 97

50 50 50 10 40 100

50 50 50 20 30 100

50 50 50 30 20 97

50 50 50 40 10 97

40 60 40 10 50 100

40 60 40 20 40 100

40 60 40 30 30 100

40 60 40 40 20 100

40 60 40 50 10 97

a Haar DWT feature extraction.
b V3–V4 growth stage.
c Two-leaf to four-leaf growth stage.
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were 98%, 100%, 100%, and 97%. In these two cases, the

system would perform well regardless of the pitted morning-

glory’s growth stage

3.4. Synthetically mixed reflectance curves

Finally, in order to account for varying mixtures of

soybean, pitted morningglory, and soil, let us consider the

results of the system when analyzing the synthetically
Fig. 8. Overall classification accuracy of automated sys
mixed hyperspectral signals. Table 2 shows the 22 different

mixing proportion cases that were investigated. In each

case, the percentage of vegetation was the same for the

two classes (soybean + soil and soybean + pitted morning

glory + soil). These datasets were tested using the DWT

approach to feature selection and the Haar mother wavelet.

When the two classes had 90% soil, the system’s overall

accuracy was only 73%, but this is to be expected consid-

ering the small amount of vegetation in the scene. When the

amount of soil was decreased from 90% to 80%, the

system’s performance significantly increased, resulting in

accuracies from 80% to 88%. And again when the propor-

tion of soil was decreased from 80% to 70%, the systems

performance significantly increased, resulting in accuracies

from 91% to 97%. Once the amount of soil was V 60%, the

system’s accuracy was between 97% and 100%. Notice that

for a given proportion of soil in the scene, as the proportions

of soybean and pitted morningglory was varied the accu-

racies changed. In each case, as the amount of pitted

morningglory decreased, the system’s accuracy decreased.

This is intuitive since the scene containing pitted morning-

glory is becoming more similar to the scene not containing

pitted morningglory.

Note that in general in our experiments, the synthetically

mixed curves resulted in slightly higher classification accu-

racies (Table 2) than with the naturally mixed signatures

(Table 3). This could be explained by the fact that the

naturally mixed curves probably contain some nonlinear

mixing effects, which could cause more natural intraclass

variance.
4. Conclusions

Wavelets show promise for being able to select pertinent

features (detail coefficients) that can be used in discriminat-

ing weed-free crop from crop intermixed with pitted mor-

ningglory.
tems for each mother wavelet and growth stage.
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When applying the Haar DWT to naturally mixed hyper-

spectral signatures, the overall classification accuracy was

90% to 100%, depending on pitted morningglory growth

stage. These results were significantly higher than when

spectral bands or principal components were used as clas-

sification variables. The ability to discriminate weed-free

soybean from soybean intermixed with pitted morningglory

fluctuated according to which mother wavelet was used.

Several mother wavelets were capable of discriminating

weed-free soybean from soybean intermixed with two-leaf

to four-leaf pitted morningglory 100% of the time. In fact,

when the biorthogonal-6.8 (bior6.8) mother wavelet was

used, the system could discriminate weed-free soybean from

soybean intermixed with pitted morningglory z 97% of the

time regardless of the pitted morningglory’s growth stage.

However, a DWT system that utilizes a Haar mother wavelet

can be very efficiently implemented with lower computa-

tional costs than a DWT system that utilizes the biorthog-

onal-6.8 mother wavelet. The increased accuracy may not

warrant the added computational expense of the biorthogo-

nal-6.8 mother.

In order to investigate the effect of vegetation type versus

magnitude of vegetation cover, several databases of syn-

thetically mixed hyperspectral signatures were constructed.

The Haar DWT-based system also performed well on the

synthetically mixed signals. As the percentage of vegetation

ground cover increased, the system’s performance in-

creased. In order to attain a classification accuracy of

z 80%, at least 20% of the ground cover needed to be

vegetation. And in order to attain a classification accuracy

of z 90%, at least 30% of the ground cover needed to be

vegetation. As the percentage of pitted morningglory

increased, relative to the percentage of soybean, the sys-

tem’s classification accuracy increased. These results are

quite promising when considering the kind of treatment that

could be applied to the crop when the pitted morningglory’s

growth stage (two-leaf to four-leaves) is still controllable

with herbicide.
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